E-Mail 'Tactical Technology for TEOTWAWKI - Part 2, by J.M.' To A Friend

Email a copy of 'Tactical Technology for TEOTWAWKI - Part 2, by J.M.' to a friend

* Required Field






Separate multiple entries with a comma. Maximum 5 entries.



Separate multiple entries with a comma. Maximum 5 entries.


E-Mail Image Verification

Loading ... Loading ...

7 Comments

  1. Wifi antennas.

    Wish I could get some of these toys! At this very moment, I’m running a 14Dbi yagi on a linear amplifer on 2.4Ghz, and have a 24Dbi antenna for longer distance wifi connections. The system and antennas has served well over the last 5 years. The range is highly dependent on terrain. In the best conditions, 5 miles is about the most that can be expected for a usable connection. I suspect if these antennas were used for remote wifi cameras and devices mentioned, the router discussed may not be necessary, at least some of the time. Fortunately these antennas are not expensive. Use LMR400 and N type connectors.

    Looking at the plans linked to (https://www.instructables.com/id/Easy-to-Build-WIFI-24GHz-Yagi-Antenna/)\
    I cannot recommend the build unless one has a VSWR meter to verify, and the instructions encourage the use without mentioning VSWR. It would be fine for receive only, but should not be transmitted on. 2.4Ghz is an extremely short wave length and there is no way to build with enough precision that a usable SWR would result without fine tuning. Even building a 2 meter yagi antennas to within a tiny 1/32” margin of error, still results in a high initial SWR’s, because there are so many factors to consider. Even the best yagi antenna builds need to be tuned with a meter.

  2. [UPDATE] I need to make a correction – I have an older version of the GL.iNET GL-MT300N-V2 that I mention in the article, which has the U.fl connections on the motherboard as described . Since I wrote this I’ve purchased another one, and the company has changed the connectors to something called IPEX MHF SW23 connectors (don’t ask me – I don’t name them), so the U.fl connections I mention in the article won’t work anymore. The good news is that you can buy a version of the router that already has the external antenna connectors installed, called the GL-AR300M (https://www.amazon.com/GL-iNet-GL-AR300M-Pre-installed-Performance-Compatible/dp/B01K6MHRJI?ref_=ast_sto_dp). The bad news is that it’s twice the cost of the one without the external antennas.

  3. I hope I’m not stepping on information from a later installment, but I’ve got “tricks of the trade” to share.
    As a controls electrician, I often need to connect devices that can be hundreds of yards away in separate structures. Too far away for a wired connection and running fiber optic seems a little silly. The answer is Ubiquiti nanostations.
    These relatively inexpensive antennas operate in the 2.4Ghz band and can be used to extend a WiFi network in a specific direction, or use two for a point to point network connection that can span miles, if need be, depending on the model.
    https://www.amazon.com/Ubiquiti-NanoStation-loco-M2-Wireless/dp/B00HXT8FFI
    What use could this be? How about a small solar powered network security camera watching your gate (or anywhere else in the county, with smart placement) and beaming it back to your home network? Think how far you can push your surveillance envelope with little to no extra expenses manpower.
    They run natively on DC, are directional and power adjustable to keep EM footprint down, and even have a “smart power” setting to boost transmission power during problems maintaining a quality connection (like bad weather) but keep the power low otherwise. Not very power hungry, either – a nanostation and network camera can easily be powered off of a 100w panel and a 60Ah lithium battery.
    Or how about a private network connection to your neighbor’s house so you don’t need to fire up a Baofeng to find out what’s going on?
    Food for thought.

    1. Chris,

      No stepping done – I appreciate you contributing more information. Part of the problem with writing an article like this is that there are literally hundreds of solutions available and there’s no way I can cover all of them, so it’s nice to hear about other folk’s experience with different options.

      1. Looks like you are talking about more truly mobile options and I’m talking about base station stuff. Might be time to write an article of my own.

  4. I found your series very interesting but even though I understand (and have) some ofthe SDR equipment you mention in your article, I admit that Wi-Fi related equipment still is a mystery. Perhaps this question doesnt belong here, but it is similar to your description of providing wi-fi signals “in the wild”
    My need is to provide wi-fi to a remote building located about 250 feet from the main house. The house has a good cable connection wi-fi, and is internally connected via Cat-5 to a good router at the far side of the house, but closest to the remote building.
    I have been using a 10 year old device in the remote building that was designed for motorhomes to be able to receive the wi-fi signal in a motorhome park. It is connected to a very high gain flat antenna aimed at the house router. In the remote building, the wi-fi “tranceiver device” is connected via Cat-5 to another router to disburse the signal in that building.
    It “works” but not very well.
    Would the remote wi-fi device you discuss in your article work in this application and bring the technology used into the 2020 era? Or is there some other thing you could suggest?
    THANKS
    I suspect some of that is because its old technology.

  5. NorthStar – The field WiFi network I described is designed to be used as a standalone network to quickly connect things like WiFi cameras, motion sensors, etc. together when you’re out in the field. For your scenario you may want to consider an outdoor WiFi extender installed partway between your house and the remote building. 250′ isn’t very far (assuming no obstacles), so you may also want to consider upgrading the WiFi ‘transceiver’ in the remote building to something more powerful.

Comments are closed.